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Abstract. The complete phase diagrams of the antiferromagnetic spin-2 Blume-Capel Ising system is stud-
ied on the Bethe lattice by the use of exact recursion relations. In order to specify the states of the system,
i.e. the different spin configurations, the ground state phase diagram is obtained on the (H/|J |, D/|J |)
plane corresponding to the reduced external magnetic and crystal fields, respectively. As a result, the
thermal change of the order-parameters, the magnetisations belonging to the two sublattice system, was
investigated to obtain the full phase diagrams of the system on the (H/|J |, kT/|J |) planes. The behavior
of the order-parameters with respect to the external magnetic field was also studied for the given values of
D/|J |. Besides the interesting thermal and external magnetic field change of the sublattice magnetisations,
the system also exhibits interesting critical behaviors including first- and second-order phase transitions,
therefore, triciritical points and the reentrant behavior. The calculations are carried out for the coordination
number q = 4, corresponding to the square lattice, only.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Fh Phase transitions: general
studies – 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 75.10.Hk
Classical spin models

1 Introduction

According to the Hund’s rule the spins of FeII ions are
spin-2 and it is experimentally found that these ions have
anisotropy [1]. The spin systems are called antiferromag-
netic or ferromagnetic depending on the sign of the bilin-
ear interaction J of the nearest-neighbor spins, that is the
antiferromagnetism corresponds to J < 0 in which case
the lattice must be divided into two sublattices while the
latter case corresponds J > 0. Therefore, we were encour-
aged to study the spin-2 antiferromagnetic Ising model
with a crystal field.

The Ising models including the crystal field or the sin-
gle ion anisotropy was firstly introduced as a spin-1 Ising
model and studied within the mean-field approximation
by Capel and independently by Blume in 1966 [2], there-
fore, it is called as a Blume-Capel model. Since then the
spin-1 system has been studied with many techniques and
it was found that it exhibits very interesting and rich
critical phenomenons. The next integer-spin model is the
spin-2 Ising model which has the spin values ±2,±1 and
0, i.e. the latter three values are also the spin values for
the spin-1, therefore the critical behaviors of the spin-2
system must also be very interesting to study, but some-
how the system has not received well deserved attention so
far. The reason for this, since the exact solutions are gen-
erally unavailable, therefore, they must be accompanied
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with numerical analysis and for such a high spin value it
is really very hard to find and distinguish all the solutions
of the model.

Therefore, the spin-2 Ising ferromagnet, J > 0, has
been studied with some different techniques and models
such as; the general expressions for evaluating the second-
order phase transition line and tricritical point of the Ising
model with and without the crystal and transverse mag-
netic fields (TIM) [3], the effect of the transverse crystal
field and transverse external magnetic field on the phase
diagrams, magnetization, quadrupolar moments, internal
energy and specific heat of the system [4] and [5], respec-
tively, the properties of the ground state TIM with the
presence of a crystal field on honeycomb lattice (q = 3)
[6], the random-field Ising model (RFIM) in the presence
of the crystal field on honeycomb, square and the sim-
ple cubic lattices with the random field is on and off [7]
are all studied within the effective field theory with cor-
relations. The magnetization and ground state structures
of Ising integer-spin system including spin-2 with bilinear
and biquadratic exchange interactions were investigated
by making use of the four-spin model approximation [8].
The quenched diluted ferromagnet has been studied the-
orethically with a probability distribution method based
on the use of the Tucker’s generalized Van der Waerden
identities [9] and with site dilution in a transverse field
was treated by using an effective field method within the
framework of a single site cluster theory [10], where the re-
sults without dilution are also presented. The bimodal and
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trimodal random-field spin-2 Ising systems in a transverse
field were investigated by combining the pair approxima-
tion with the discretized path integral representation [11],
respectively, and the matrix product approach was used to
construct all optimum ground states of general anisotropic
spin-2 chains with nearest-neighbor interactions and com-
mon symmetries [12]. We should also note that the spin-S
system for (S > 1), where also the spin-2 calculations and
results were given as a part of the work, has been studied,
see references in [11].

For the antiferromagnetic case, J < 0, as far as we
know there are not any studies for the classical Ising
model. In spite of this, the other model which is used to
study the magnetic spin systems is the quantum mechan-
ical Heisenberg model, therefore, at least we can mention
few works for the spin-2 quantum antiferromagnets such
as; an efficient projector Monte Carlo method was used to
calculate the numerical solution of the spin-2 Heisenberg
antiferromagnetic chains [13], the optimum ground state
approach was used to construct exact nontrivial ground
states of spin-2 quantum antiferromagnets on the hexag-
onal lattices [14] and the vertex state model approach
was used to construct optimum ground states for a large
class of quantum spin-2 antiferromagnets on the square
lattice [15]. At this point, it should be mentioned that
the antiferromagnetic case has only been studied at the
ground state level but as mentioned above the spin-2 sys-
tem does deserve to be studied for higher temperatures as
well.

We should also mention that the exact solutions for the
realistic systems on regular lattices are generally unavail-
able, therefore, one usually relies on approximation meth-
ods to obtain, at least, a qualitative picture for the phase
diagrams of the considered system at hand. One may even
introduce a lattice-like fictitious tree to find exact or ap-
proximate solutions of the model. A Bethe lattice is such
a lattice, which is an infinitely Cayley or regular tree i.e. a
connected graph without circuits and historically gets its
name from the fact that its partition function is exactly
that of an Ising model in the Bethe approximation [16].
The importance is that the Bethe lattice is an infinite tree
gives us the negligible boundary effects, therefore, far from
the boundary sites that is deep inside the Cayley tree, now
Bethe lattice, all the sites become equivalent, thus study-
ing the behavior of one spin, named as the central spin, is
enough to obtain the full picture of the system. We should
also comment that the Bethe lattice calculations provides
exact solutions and results of which qualitatively better
approximations for the regular lattices than solutions ob-
tained by the conventional mean-field theories [17]. In ad-
dition, the cluster variation method in the pair approxima-
tion studies on regular lattices yield results that are exact
for the same model on the Bethe lattice [18]. Of course,
the Bethe lattice considerations also have some limitations
that is it predicts a transition temperature higher than
that for a regular lattice and it is not reliable for predict-
ing critical exponents [19], where also the correspondence
of the Bethe lattice with regular lattices and real physi-
cal systems and whether it can be embedded into a finite-

dimensional Euclidean space are also discussed. Therefore,
in this work we have employed the use of the Bethe lattice
in terms of the recursion relations [20] to study the spin-2
antiferromagnet.

The remaining part of the paper for the spin-2 anti-
ferromagnetic Ising system is constructed as follows. In
Section 2, besides the ground state phase diagram given
on the (H/|J |, D/|J |) plane, the exact formulation of the
model is also presented. Section 3 is devoted to the ther-
mal and external magnetic field variations of the sublattice
magnetisations and to the phase diagrams of the system
on the the (H/|J |, kT/|J |) planes. In the final section, we
present a brief summary, comparisons and some remarks.

2 The formulation in terms of the exact
recursion relations

The Hamiltonian of the spin-2 antiferromagnetic (J < 0)
Blume-Capel (BC) model is given as

H = −J
∑

〈ij〉
σiσj − D

∑

i

σ2
i − H

∑

i

σi, (1)

where each σi located at site i is a spin-2 with five discrete
spin values, i.e. ±2,±1 and 0, D and H denote the crystal
and the external magnetic fields, respectively, and while
the first sum runs over all the nearest-neighbor pairs, the
last two sums run over all the sites.

Before obtaining the phase diagrams of the system
on the (H/|J |, kT/|J |) planes, first we have to study
analytically the ground state phase diagram, the phase
diagram of the system at zero absolute temperature, to
determine the different configurations, i.e. ground states,
of the system. The ground-state energy in units of |J |
and with crystal and external magnetic fields may be
described by the following Hamiltonian:

E

q|J | = −
[

J

|J |σiσj +
D

q|J | (σ
2
i + σ2

j ) +
H

q|J | (σi + σj)
]

,

(2)
where the bilinear interaction is restricted to the q nearest-
neighbor pair of spins and q = 4 is taken. Then the
ground state configurations corresponding to the spin val-
ues ±2,±1 and 0 are obtained by comparing the values of
the energy E as given in the above equation for different
spin configurations and then the ground state of the sys-
tem is the one with the lowest energy for given values of
the system parameters. As a result, the obtained ground
state configurations, labeled with the values (σA, σB) for
the sublattices, are presented in Figure 1. The coordinates
(H/|J |, D/|J |) of the multiple phase points are indicated
with the solid circles and given as

A1 → (−8, 0), A2 → (−10,−2),
A3 → (−6,−2), A4 → (−2,−2) for H/|J | < 0

and
B1 → (8, 0), B2 → (2,−2),
B3 → (6,−2), B4 → (10,−2) for H/|J | > 0.
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In addition to these, the solid lines separating the different
ground state configurations may be named as the multi-
phase lines, since the corresponding separated configura-
tions coexist on these lines. As a result, the multiphase
points A1 and B1 are isolated on the D/|J | = 0 line and
the others A2 → A4 for H/|J | < 0 and B2 → B4 for
H/|J | > 0 are actually connected with a multiphase line
starting from A2 and ending on the B4 as seen on the
ground state phase diagram corresponding to the value of
D/|J | = −2.0. It is interesting to note that even if the mul-
tiphase line starting with A4 and ending on B2 separates
the (−2, 2) configuration from the (0, 0) one, the configu-
ration (−1, 1) also appears on this line which is contrary
to the other multiphase lines of the diagram. Therefore, in
order for the ground state phase diagram to shed light in
obtaining the full phase diagrams of the model, we have
divided it into three regions by the D/|J | = 0 line, pass-
ing through the isolated multiphase points A1 and B1, and
D/|J | = −2.0 line, passing through the multiphase points
A2 → A4 and B2 → B4 which are actually on the multi-
phase lines starting with A2 and ending on point B4, cor-
responding to the range of values of D/|J | in the intervals
of (∞, 0), (0, −2) and (−2,−∞). Thus, the dashed lines
separate three regions in the ground state phase diagram,
indicated with roman numbers I, II and III, showing some
characteristic differences depending on the number of dif-
ferent configurations of the system labeled with (σA, σB)
pairs. Consequently, in order to study the thermal and
external magnetic field change of the order-parameters to
obtain the phase diagrams at higher temperatures we have
chosen the values of crystal fields from these three regions
besides the crystal field values for the lines passing the
multiphase points, which are enough to obtain the com-
plete phase diagrams of the model. For the final word, we
should also note that the ground state phase diagram is
symmetric with respect to H/|J | = 0 line, i.e. invariant
under the transformation H → −H and σ → −σ.

In order to calculate the phase diagram of the system,
first we have to obtain the formulation of the system on
the Bethe lattice in terms of the recursion relations. Thus,
let us start with the calculation of the partition function

Z =
∑

{σ}
exp(−βH) =

∑

Spc

P (Spc)

=
∑

{σ}
exp[β(J

∑

〈ij〉
σiσj + D

∑

i

σ2
i + H

∑

i

σi)], (3)

where P (Spc) is considered as an unnormalized proba-
bility distribution over the spin configurations, Spc ≡
{σi, σj}, etc. If the Bethe lattice is cut in some central
point deep inside with a spin σ0, then it splits up into q
identical branches whose number depends on the number
of nearest-neighbors or the coordination numbers. Each of
these branches is a rooted tree at the central-spin σ0. This
implies that P (Spc), Spc = {σ0}, is the spin-configuration
with the spin value σ0 at the central site and is given as

P (σ) = exp
[
β(Dσ2

0 + Hσ0)
] q∏

k=1

Qn

(
σ0|σ(k)

)
, (4)

where the suffix n expresses the fact that the sub-tree
has n-shells, i.e. the number of steps from the root to the
boundary sites. In equation (4) the function Qn in the
product is given as

Qn(σ0|σ(k)) = exp

⎡

⎣β(Jσ0σ1 + J
∑

〈ij〉
σiσj

+D
∑

i

σ2
i + H

∑

i

σi)

]
. (5)

The first summation in equation (5) is over all edges of
the sub-tree other than the edge (0, 1) and the summation
over i is over all sites other than the central site σ0. Now
if the sub-tree, e.g. the upper sub-tree, is cut at the site 1
next to 0, then it also decomposes into q pieces: one being
“trunk” (0, 1) and the rest are the identical branches. Each
of these branches is a sub-tree like the original, but with
n − 1 shells and q − 1 neighbors. Therefore,

Qn(σ0|{σk
1}) = exp[β(Jσ0σ1 + Dσ2

1 + Hσ1)]

×
q−1∏

l=1

Qn−1(σk
1 |{τ (l)

2 }), (6)

where {τ (l)
2 } denotes the spin-configurations (other than

σ
(k)
1 ) on the lth branch of the subtree. In order to obtain

a formulation for the central spin σ0 to be in a certain
spin value with a certain probability as a result of its
interaction with the external parameters and with its q
nearest-neighbors of σ1, we define

gn(σ0) =
∑

{σ1}
Qn(σ0|{σ1}), (7)

where the summation is taken over σ1, since the central
spin interacts only with its q nearest neighbors. Thus, from
equations (6) and (7) we obtain

gn(σ0) =
∑

{σ1}
exp[β(Jσ0σ1 + Dσ2

1 + Hσ1)]

× [gn−1(σ1)]q−1, (8)

which varies depending on the spin values, i.e. for spin-2
they are ±2,±1 and 0, and the system parameters. For
each discrete spin values of σ0, the nearest-neighbor spin
can take five discrete values, ±2,±1 and 0, therefore we
obtain five different gn functions for each value of σ0.
Therefore, for σ0 ≡ ±2 we get

gn(±2) =
∑

σ1

exp[β(±2Jσ1+Dσ2
1+Hσ1)]×[gn−1(σ1)]q−1

= exp[β(±4J + 4D + 2H)][gn−1(+2)]q−1

+ exp[β(∓4J + 4D − 2H)][gn−1(−2)]q−1

+ exp[β(±2J + D + H)][gn−1(+1)]q−1

+ exp[β(∓2J + D − H)][gn−1(−1)]q−1

+[gn−1(0)]q−1, (9)
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when σ0 ≡ ±1 we obtain

gn(±1) =
∑

σ1

exp[β(±Jσ1+Dσ2
1+Hσ1)]×[gn−1(σ1)]q−1

= exp[β(±2J + 4D + 2H)][gn−1(+2)]q−1

+ exp[β(∓2J + 4D − 2H)][gn−1(−2)]q−1

+ exp[β(±J + D + H)][gn−1(+1)]q−1

+ exp[β(∓J + D − H)][gn−1(−1)]q−1

+[gn−1(0)]q−1, (10)

and for the last spin value, i.e. σ0 ≡ 0, we calculate as

gn(0) =
∑

σ1

exp[β(Dσ2
1 + Hσ1)] × [gn−1(σ1)]q−1

= exp[β(4D + 2H)][gn−1(+2)]q−1

+ exp[β(4D − 2H)][gn−1(−2)]q−1

+ exp[β(D + H)][gn−1(+1)]q−1

+ exp[β(D − H)][gn−1(−1)]q−1

+ [gn−1(0)]q−1. (11)

Finally, the four recursion relations are obtained in terms
of the five gn functions corresponding to each of the spin
values ±2,±1 and 0, therefore, dividing these gn functions
with one of the gn function, let’s say with gn(0), we obtain
the recursion relations as

Xn =
gn(+2)
gn(0)

, Yn =
gn(−2)
gn(0)

,

Zn =
gn(+1)
gn(0)

, and Wn =
gn(−1)
gn(0)

, (12)

which may be calculated explicitly by inserting the gn

functions given in equations (9–11) into the last equation.
In order to obtain the order-parameters in terms of

these four recursion relations, first the partition function

Z =
∑

{σ0}
exp

[
β

(
Dσ2

0 + Hσ0

)]
[gn(σ0)]

q
, (13)

should be obtained in terms of gn functions as

Z = eβ(4D+2H)[gn(+2)]q + eβ(4D−2H)[gn(−2)]q

+ eβ(D+H)[gn(+1)]q + eβ(D−H)[gn(−1)]q + [gn(0)]q.
(14)

Thus using the usual definition of the dipolar order-
parameter, the magnetization,

M = Z−1
∑

{σ0}
σ0 P (σ0), (15)

which may be calculated explicitly in terms of the recur-
sion relations by inserting the partition function and then
doing the necessary calculations over the spin values as

M = Z−1
∑

{σ0}
σ0e

β(Dσ2
0+Hσ0)[gn(σ0)]q

=
2e4βD[e2βHXq

n−e−2βHY q
n ]+eβD[eβHZq

n−e−βHW q
n ]

e4βD[e2βHXq
n+e−2βHY q

n ]+eβD[eβHZq
n+e−βHW q

n ]+1
.

(16)

The recursion relation equations, i.e. equation (12), form
an iteration sequence {Xn, Yn, Zn, Wn}, which in the ther-
modynamic limit converges to stable fixed points. By the
use of the expression for the magnetization these points
completely define the possible states of the system. Using
equations (9–12) and (14), we can also write the expression
for the free energy, which is used to obtain the first-order
phase transition temperatures, as

−βF =
ln Z

N
= ln[eβ(4D+2H)Xq

n + eβ(4D−2H)Y q
n

+e(D+H)Zq
n + eβ(D−H)W q

n + 1]

+
q

2 − q
ln[eβ(4D+2H)Xq−1

n

+eβ(4D−2H)Y q−1
n

+e(D+H)Zq−1
n + eβ(D−H)W q−1

n + 1], (17)

where we have used the fact that deep inside the Bethe
lattice, that is in the thermodynamic limit as n → ∞, all
the sites are equivalent.

In the antiferromagnetic coupling, in order to simu-
late the system we have to introduce two-sublattices, i.e.
A and B. Hence the order-parameters belonging to each
sublattice, the sublattice magnetisations, since each spin
only interacts with its nearest neighbors, could be written
as

{M} → {MA} for even n
{MB} for odd n (18)

or equivalently these could be written in terms of the re-
cursion relations as

{Xn, Yn, Zn, Wn} → {XA
n , Y A

n , ZA
n , WA

n } for even n
{XB

n , Y B
n , ZB

n , WB
n } for odd n.

(19)
The remarkable points of this approach are that non-
staggered phases are described by the single fixed points
{Xn, Yn, Zn, Wn} → {X, Y, Z, W}, while the staggered
phases appear as two-cycle double points [21] as indicated
above.

Now, we are ready to investigate the thermal and ex-
ternal magnetic field variations of the sublattice magneti-
sations for given values of the crystal field, which were
chosen from each of these three regions and for D/|J | = 0
and D/|J | = −2.0, i.e. multiphase point lines, as indicated
in the ground state phase diagram, to obtain the phase
diagrams of the system on the (H/|J |, kT/|J |) plane for
q = 4 only.

3 The complete phase diagrams
and the behaviors of the sublattice
magnetisations

In order to study the multicritical behaviors of the anti-
ferromagnetic spin-2 BC model in an external magnetic
field on the Bethe lattice, one has to study the thermal
variations of the order-parameters and the free energy of
the system. Therefore, the second-order phase transition
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Fig. 1. The ground state phase diagram for the spin-2 anti-
ferromagnet. See text for the details.

temperatures, Tc, are defined as the temperature at which
the sublattice magnetisations become equal to each other,
while at the first-order phase transition temperatures, Tt,
the sublattice magnetisations show jump discontinuity or
equivalently the temperature at which the free energy val-
ues corresponding to the different solutions of the model
become equal. Thus, the phase diagrams of the model was
constructed on the (H/|J |, kT/|J |) planes for given values
of D/|J | by locating the places of these critical temper-
atures. In the phase diagrams the solid and dashed lines
correspond to the second- and first-order phase transition
temperatures and the different phase regions are indicated
with the values of (σA, σB). We should also mention that
by using the knowledge of the ground state phase diagram
these regions corresponding to the different spin configu-
rations are separated by the use of solid triangles. In order
for this study to be more intelligible, whenever it is possi-
ble we have given the thermal and external magnetic field
change of the sublattice magnetisations as the insets in the
phase diagrams, otherwise they are separately displayed.
In addition to these, we have also indicated the second-
and first-order phase transition temperatures with Tc and
Tt, respectively, together with an arrow for the thermal
change of the sublattice magnetization figures. As it was
mentioned above, the phase diagrams of the system are
obtained for five values of the crystal fields correspond-
ing to the regions I, II and III and, to the D/|J | = 0
and D/|J | = −2.0 lines passing through the multiphase
points, where the part of the latter is actually a multi-
phase line starting from A2 and ending at B4, as shown
in the ground state phase diagram (Fig. 1) of the model.
As a result, we have studied the phase diagrams of the
model for H/|J | > 0 because of symmetry with respect to
H/|J | = 0 line for five different values of the crystal field
as follows:

Region I: the phase diagram is obtained for D/|J | =
1.0 chosen from region I above the dashed line passing

Fig. 2. The phase diagram on the (H/|J |, kT/|J |) plane for
D/|J | = 1.0 chosen from Region I of Figure 1. The system
only gives second-order phase transitions as seen in the inset
figures for thermal and magnetic field change of MA and MB .
The second-order phase transition line separates the antifer-
romagnetic phase (2, −2) from the disordered phase and the
ferromagnetic phase (2, 2) is only seen on the kT/|J | = 0 line
with H/|J | ≥ 8.

through D/|J | = 0.0 line. As shown in Figure 2, the anti-
ferromagnetic region, i.e. (2, −2) phase, is separated from
the disordered phase with the second-order phase tran-
sition line. The thermal and magnetic field variations of
the sublattice magnetisations, MA and MB, are shown as
inset figures obtained for H/|J | = 2 and kT/|J | = 2, re-
spectively. As seen in the inset for the thermal change of
the sublattice magnetisations, MA and MB start from 2
and −2 at zero temperature and as the temperature in-
creases MA decreases and MB increases and they combine
at Tc. We have also presented the magnetic field change of
the magnetisations as an inset figure, where again MA and
MB start from 2 and −2 at zero H/|J | and as H/|J | in-
creases MA decreases and MB increases and they combine
at some critical value of H/|J |. We should mention that
the magnetization curves for the sublattices correspond-
ing to the configuration (2, 2) as shown in the ground
state phase diagram, i.e. at zero temperature, is totally
ferromagnetic in nature. At nonzero temperatures with
external magnetic fields acting on the system these mag-
netization curves never cut the kT/|J | = 0 line, therefore,
no phase transitions are seen. As a result, the ferromag-
netic phase with configuration (2, 2) can not be displayed
in Figure 2, since the second-order phase transitions of the
ferromagnetic case can only be obtained at zero H/|J |, i.e.
the case of spontaneous magnetization.

The D/|J | = 0 line: in search of interesting multicrit-
ical behaviors, the phase diagram is calculated along the
dashed line passing through the isolated multiphase points
A1 and B1 and presented in Figure 3. The obtained phase
diagram is similar with the previous one, i.e. Figure 2, but
there are only two differences; the first one is the second-
order line starts at a lower value of kT/|J | at H/|J | = 0
and the other is that the appearance of the reentrant be-
havior. As seen in Figure 3, the second-order line start
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Fig. 3. Same as with Figure 2, but D/|J | = 0 chosen along the
dashed line passing through the isolated multiphase points.

at zero temperature with H/|J | = 8.0 as expected from
the ground state phase diagram and as the temperature
increases this line extends beyond the H/|J | = 8.0 and
as the temperature increases further the line passes the
point H/|J | = 8.0 the second times in the opposite direc-
tion, thus presenting the reentrant behavior.

Region II: the phase diagram is obtained for D/|J | =
−1.0 chosen from region II between the two dashed
lines and exhibited in Figure 4. As seen in the ground
state phase diagram, in moving on the positive H/|J |-
axes starting from zero, one has to cross the multiphase
lines, i.e. the first one of these separates the configura-
tion (−2, 2) from the configuration (−1, 2), the second
one separates the latter from the configuration (0, 2), the
next separates (0, 2) from (1, 2) and the final one sepa-
rates (1, 2) from (2, 2) configuration. The ranges of these
configurations, i.e. the beginning and ending H/|J | val-
ues for each configuration according to the ground state
phase diagram, are labeled with solid triangles in the
phase diagram on the (H/|J |, kT/|J |) plane. The system
again presents only second-order phase transitions, but
now the second-order phase transition line goes to zero
temperature at higher H/|J |. In the insets of the figure,
we have only presented the thermal and magnetic field
change of the sublattice magnetisations for the configura-
tion (2, −2) at H/|J | = 2.0 and kT/|J | = 0.25, respec-
tively. Even if the different configurations, as seen in the
ground state phase diagram, available at zero temperature
which are indicated with solid triangles in the phase dia-
gram, i.e. Figure 4, but which are not easily distinguished
at higher temperatures. The reason of this, even though
as the temperature increases a little, these configurations
disappear gradually, for example, in the inset figure for
kT/|J | = 0.25 the magnetization curves present flatness
for the corresponding configurations, but they disappear
as the temperature increases further.

The D/|J | = −2.0 line: the drawn dashed line actu-
ally passes through the multiphase line starting from the

Fig. 4. Similar with Figure 2, but the phase diagram is ob-
tained for region II of Figure 1 with D/|J | = −1.0. The second-
order phase line is less sharp close to kT/|J | = 0.0 compared
with the first two phase diagrams.

multiphase point A2 and ending on the multiphase point
B4 besides the other multiphase points, A3, A4, B2 and
B3 at shown in the ground state phase diagram. There-
fore, the obtained phase diagram is the most interesting
and the complicated one of this work and is presented in
Figure 5a. Starting from H/|J | = 0 and moving along
the positive H/|J |-axes, one has to pass three multiphase
points besides the multiphase line separating the different
configurations of the model. The part of the multiphase
line, i.e. A4−B2, separates the configuration (−2, 2) from
(0, 0), thus along this line both configurations exist besides
the configuration (−1, 1), which is only seen along this line
for the ground state phase diagram. The system gives two
first-order phase transitions for the configurations (−2, 2)
and (−1, 1) at lower and higher kT/|J | values, respec-
tively, which is also indicated in Figures 5b(i) and 5b(ii)
(obtained by lowering the temperature from above to see
the initial values of the sublattice magnetisations, i.e. it is
the same with the corresponding branch of the magnetisa-
tions given in (i)) for the thermal change of the sublattice
magnetisations where at the critical value of kT/|J | both
of the magnetisations show jump discontinuity. The sec-
ond part of the multiphase line B2 − B3 separates the
configurations (0, 1) and (−1, 2), where for the first con-
figuration only second-order and for the (−1, 2) configu-
ration only the first-order phase transitions are observed
at higher and lower values of kT/|J |, respectively, thus
for this range the model presents both first- and second-
order phase transitions. The thermal change of the mag-
netisations for this case is illustrated in Figure 5b(iii) and
5b(iv), where the latter is again an extension of 5b(iii)
as explained in the previous case, as seen the magnetisa-
tions start with the configuration (−1, 2) at zero kT/|J |
and at the first Tt the magnetisations jump to the config-
uration (0, 1) and eventually both of the magnetisations
combine at the Tc. The last part of the multiphase line
B3 − B4 separates the configurations (0, 2) and (1, 1).
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(a)

(b)

(c)

Fig. 5. (a) The phase diagram is obtained for D/|J | = −2.0, i.e. the second dashed
line, containing the multiphase points and the multiphase line A4 −B4 of Figure 1
for positive H/|J |. The system shows both second- and first-order phase transitions,
therefore tricritical points; (b) thermal variations of the sublattice magnetisations
for the configurations indicated in the phase diagram; and (c) the splitting of the
sublattice magnetisations corresponding to the magnetic field change obtained for
kT/|J | = 0.4.
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It should again be mentioned that in the phase diagram
no solution was obtained for the totally ferromagnetic
configuration (1, 1), since this ferromagnetic configura-
tion gives phase transitions only at zero temperature. For
nonzero temperatures because of the existence of the ex-
ternal magnetic field, this configuration is not seen in the
phase diagram which is also explained previously for the
configuration (2, 2) in Figure 2. As a result, the model
shows only one first-order phase transition with the con-
figuration (0, 2) for this part of the multiphase line and
for which the thermal behaviors of MA and MB, given in
Figure 5b(v), exhibits jump discontinuity. The multiphase
line ends on the point B4, therefore, the dashed line now
only cuts the multiphase line separating the configurations
(1, 2) and (2, 2), where again the configuration (2, 2) is
totally ferromagnetic and no solution was found as in the
configuration with (1, 1), thus this part of the phase dia-
gram only presents second-order lines which is also seen in
Figure 5b(vi) for the thermal variations of the sublattice
magnetisations. We should also mention that the point
where the second- and first-order phase lines connect are
called as the tricritical point. Besides the phase diagram
and the thermal variations of the sublattice magnetisa-
tions, we have also depicted the magnetic field change of
the sublattice magnetisations along kT/|J | = 0.4 in the
phase diagram. As the external magnetic field increases
the sublattice magnetisations give five first-order and two
second-order phase transitions indicated with arrows in
Figure 5c in agreement with the corresponding phase di-
agram, i.e. Figure 5a.

Region III: the last phase diagram is obtained for
D/|J | = −4.0, see Figure 6, which is below the second
dashed line passing through the D/|J | = −2.0. Again in
moving along the positive H/|J |-axis, one has to cross the
configurations (0, 0), (0, 1), (1, 1), (1, 2) and (2, 2) as seen
in the ground state phase diagram. In the phase diagram,
we only find solutions belonging to the configurations (0,
1) and (1, 2) for which the sublattice magnetisations only
show second-order phase transitions. In addition, the con-
figurations (1, 1) and (2, 2) correspond to the ferromag-
netic case and for negative bilinear interaction, i.e. antifer-
romagnetic case, again because of the external magnetic
field these phases can not be seen which is also explained
for Figures 2 and 5. The second-order lines, surround the
phases with configurations (0, 1) and (1, 2), make similar
closed peaks occurring at lower and higher external mag-
netic fields, respectively, separates these ordered phases
from the disordered phase. In the inset figures for the
thermal variations of MA and MB, the existence of the
second-order phase transitions are clearly indicated. The
magnetic field change of MA and MB is also given as an
inset figure, where the two branches of the sublattice mag-
netisations make nice closed loops for the corresponding
configurations in agreement with the phase diagram.

We should mention that the obtained rich phase dia-
grams are all in agreement with the thermal and magnetic
field change of the sublattice magnetisations and with the
ground state phase diagram.

Fig. 6. The phase diagram is obtained for D/|J | = −4.0 cho-
sen from Region III of Figure 1. The system shows only
parabolic like second-order phase transition lines for the config-
urations (0, 1) and (1,2) which separates these ordered phases
from the disordered phase. The phases (0, 0), (1, 1) and (2, 2)
only exist at zero temperature. Thus, the thermal and mag-
netic field change of MA and MB are given in the inset figures
for only (0, 1) and (1, 2) configurations.

4 Conclusion

The spin-2 Ising antiferromagnet was studied systemat-
ically; first in order to distinguish the different configu-
rations of the Blume-Capel model we have obtained the
ground state phase diagram on the (H/|J |, D/|J |) plane.
Then by choosing five different places in the ground state
phase diagram, each having its own characteristic config-
urations, for five different values of the crystal field inter-
actions the phase diagrams of the model were obtained
on the (H/|J |, kT/|J |) planes. We have also illustrated
the thermal and external magnetic field variations of the
order-parameters either as insets or separately. As a re-
sult, we have obtained some critical behaviors such as
second- and first-order phase transitions, tricritical points
and the reentrant behavior. Therefore, the obtained phase
diagrams are very rich in content as we mentioned in the
introduction.

In order to generalize the antiferromagnetic Blume-
Capel spin-S system, i.e. S = 1, 3/2, 2, etc., we have
to consider the typical phase diagrams of the model ob-
tained for the values of D/|J | as given in this work: when
D/|J | > 0, the system is in the configuration correspond-
ing to the maximum spin value (S, −S) of spin-S system
in which case the second-order phase transition lines sep-
arate the ordered phase from the disordered phase. As the
values of D/|J | becomes negative the transitions are seen
to be second-order type but as we get closer and closer to
the D/|J | = −2 the first-order transitions occur and the
configurations can be classified from left to the right on
the H/|J |-axes as (−S + i, S) with (i = 0, 1,..., 2S − 1)
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for the spin-S system again. The corresponding config-
urations of the latter now can be exactly distinguished
for D/|J | = −2, since the phase regions are now sepa-
rated by the critical lines of the first- or the second-order
type. In this case, each of the ground state configurations
(−S + i, S) make sequential closed loops on the top of
each other as the temperature increases in which case the
corresponding configurations can easily be obtained by in-
creasing and decreasing the (−S + i, S) configuration by
one, respectively. Finally, for D/|J | < −2, the system only
gives second-order phase transitions in the form of closed
peaks, as the H/|J | values increase the spin configurations
for the integer spin-S system as starting from the lowest
spin values, i.e. (Sa = 0, Sb = 0), then these spin values
increase one by one for Sa and Sb for which the loops
are seen only for Sa �= Sb and for the half-integer system
the phase diagram starts with a half-closed loop with the
spin configuration (Sa = 1/2, Sb = −1/2) again the spin
values increase one by one for Sa and Sb with Sa �= Sb

again, sequentially. What we are saying above can easily
be understood when one compares Figures 2 and 3 of [22]
for spin-1, Figure 1 of [23] for spin-3/2 and all the phase
diagrams of this work for spin-2.

In conclusion, we have studied very thoroughly and in
detail the spin-2 Ising antiferromagnet on the Bethe lat-
tice and we have tried to generalize by using the obtained
phase diagrams of spin-1 [22], spin-3/2 [23], spin-2 of this
work and for higher spin-S values intuitively.
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